|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, номер 3, страницы 60–71
(Mi basm397)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Research articles
Generating cubic equations as a method for public encryption
N. A. Moldovyana, A. A. Moldovyanb, V. A. Shcherbacovc a St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, 14 Liniya, 39, St. Petersburg 199178, Russia
b ITMO University, Kronverksky pr., 10, St. Petersburg, 197101, Russia
c Institute of Mathematics and Computer Science Academy of Sciences of Moldova, Academiei str. 5, MD-2028, Chişinău, Moldova
Аннотация:
The paper introduces a new method for public encryption in which the enciphering process is performed as generating coefficients of some cubic equation over finite ring and the deciphering process is solving the equation. Security of the method is based on difficulty of factoring problem, namely, difficulty of factoring a composite number $n$ that serves as public key. The private key is the pair of primes $p$ and $q$ such that $n=pq$. The deciphering process is performed as solving cubic congruence modulo $n$. Finding roots of cubic equations in the fields $GF(p)$ and $GF(q)$ is the first step of the decryption. We have described a method for solving cubic equations defined over ground finite fields. The proposed public encryption algorithm has been applied to design bi-deniable encryption protocol.
Ключевые слова и фразы:
cryptography, ciphering, public encryption, deniable encryption, public key, cubic equation, Galois field, factoring problem.
Поступила в редакцию: 02.10.2015
Образец цитирования:
N. A. Moldovyan, A. A. Moldovyan, V. A. Shcherbacov, “Generating cubic equations as a method for public encryption”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3, 60–71
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm397 https://www.mathnet.ru/rus/basm/y2015/i3/p60
|
Статистика просмотров: |
Страница аннотации: | 351 | PDF полного текста: | 58 | Список литературы: | 48 |
|