Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, номер 3, страницы 72–78 (Mi basm396)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Research articles

Determining the distribution of the duration of stationary games for zero-order markov processes with final sequence of states

Alexandru Lazari

Moldova State University, 60 Mateevici str., Chişinău, MD-2009, Moldova
Список литературы:
Аннотация: A zero-order Markov process with final sequence of states represents a stochastic system with independent transitions that stops its evolution as soon as given final sequence of states is reached. The transition time of the system is unitary and the transition probability depends only on the destination state. We consider the following game. Initially, each player defines his distribution of the states. The initial distribution of the states is established according to the distribution given by the first player. After that, the stochastic system passes consecutively to the next state according to the distribution given by the next player. After the last player, the first player acts on the system evolution and the game continues in this way until the given final sequence of states is achieved. Our goal is to study the duration of this game, knowing the distribution established by each player and the final sequence of states of the stochastic system. It is proved that the distribution of the duration of the game is a homogeneous linear recurrent sequence and it is developed a polynomial algorithm to determine the initial state and the generating vector of this recurrence. Using the generating function, the main probabilistic characteristics are determined.
Ключевые слова и фразы: zero-order Markov process, final sequence of states, duration, game, homogeneous linear recurrence, generating function.
Поступила в редакцию: 15.10.2015
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexandru Lazari, “Determining the distribution of the duration of stationary games for zero-order markov processes with final sequence of states”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 3, 72–78
Цитирование в формате AMSBIB
\RBibitem{Laz15}
\by Alexandru~Lazari
\paper Determining the distribution of the duration of stationary games for zero-order markov processes with final sequence of states
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2015
\issue 3
\pages 72--78
\mathnet{http://mi.mathnet.ru/basm396}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/basm396
  • https://www.mathnet.ru/rus/basm/y2015/i3/p72
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Статистика просмотров:
    Страница аннотации:214
    PDF полного текста:28
    Список литературы:43
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024