|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2015, номер 2, страницы 27–35
(Mi basm387)
|
|
|
|
Research articles
On $2$-absorbing primary subsemimodules over commutative semirings
Manish Kant Dubeya, Poonam Saroheb a SAG, DRDO, Metcalf House, Delhi 110054, India
b Department of Mathematics, Lakshmibai College, University of Delhi, Delhi 110052, India
Аннотация:
In this paper, we define $2$-absorbing primary subsemimodules of a semimodule $M$ over a commutative semiring $S$ with $1\neq0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule $N$ of a semimodule $M$ is said to be a $2$-absorbing primary subsemimodule of $M$ if $abm\in N$ implies $ab\in \sqrt{(N:M)}$ or $am\in N$ or $bm\in N$ for some $a,b\in S$ and $m\in M$. It is proved that if $K$ is a subtractive subsemimodule of $M$ and $\sqrt{(K:M)}$ is a subtractive ideal of $S$, then $K$ is a $2$-absorbing primary subsemimodule of $M$ if and only if whenever $IJN\subseteq K$ for some ideals $I, J$ of $S$ and a subsemimodule $N$ of $M$, then $IJ\subseteq\sqrt{(K:M)}$ or $IN\subseteq K$ or $JN\subseteq K$. In this paper, we prove a number of results concerning $2$-absorbing primary subsemimodules.
Ключевые слова и фразы:
semimodule, subtractive subsemimodule, $2$-absorbing primary subsemimodule, $Q$-subsemimodule.
Поступила в редакцию: 13.10.2014 Исправленный вариант: 22.04.2015
Образец цитирования:
Manish Kant Dubey, Poonam Sarohe, “On $2$-absorbing primary subsemimodules over commutative semirings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2, 27–35
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm387 https://www.mathnet.ru/rus/basm/y2015/i2/p27
|
|