|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2013, номер 2-3, страницы 5–16
(Mi basm346)
|
|
|
|
Liouville's theorem for vector-valued functions
Mati Abel Institute of Pure Mathematics, University of Tartu, 2 J. Liivi Str., room 614, 50409 Tartu, Estonia
Аннотация:
It is shown in [2] that any $X$-valued analytic map on $\mathbb C\cup\{\infty\}$ is a constant map in case when $X$ is a strongly galbed Hausdorff space. In [3] this result is generalized to the case when $X$ is a topological linear Hausdorff space, the von Neumann bornology of which is strongly galbed. A new detailed proof for the last result is given in the present paper. Moreover, it is shown that for several topological linear spaces the von Neumann bornology is strongly galbed or pseudogalbed.
Ключевые слова и фразы:
Liouville's theorem, vector-valued analytic function, metrizable linear space, galbed space, locally pseudoconvex space, $F$-space, von Neumann bornology, strictly galbed bornology, pseudogalbed bornology.
Поступила в редакцию: 09.10.2012
Образец цитирования:
Mati Abel, “Liouville's theorem for vector-valued functions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 2-3, 5–16
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm346 https://www.mathnet.ru/rus/basm/y2013/i2/p5
|
|