|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2012, номер 1, страницы 21–31
(Mi basm307)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Conjugate sets of loops and quasigroups. DC-quasigroups
G. B. Belyavskaya, T. V. Popovich Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău, Moldova
Аннотация:
It is known that the set of conjugates (the conjugate set) of a binary quasigroup can contain 1,2,3 or 6 elements. We investigate loops, $IP$-quasigroups and $T$-quasigroups with distinct conjugate sets described earlier. We study in more detail the quasigroups all conjugates of which are pairwise distinct (shortly, $DC$-quasigroups). The criterion of a $DC$-quasigroup (a $DC$-$IP$-quasigroup, a $DC$-$T$-quasigroup) is given, the existence of $DC$-$T$-quasigroups for any order $n\geq5$, $n\neq6$, is proved and some examples of $DC$-quasigroups are given.
Ключевые слова и фразы:
quasigroup, loop, $IP$-quasigroup, $T$-quasigroup, conjugate, parastrophe, identity.
Поступила в редакцию: 24.06.2011
Образец цитирования:
G. B. Belyavskaya, T. V. Popovich, “Conjugate sets of loops and quasigroups. DC-quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 1, 21–31
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm307 https://www.mathnet.ru/rus/basm/y2012/i1/p21
|
|