|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2011, номер 3, страницы 29–44
(Mi basm297)
|
|
|
|
A generalization of Hardy–Hilbert's inequality for non-homogeneous kernel
Namita Dasa, Srinibas Sahoob a Department of Mathematics, Utkal University, Bhubaneswar, Orissa, India
b Department of Mathematics, Banki Autonomous College, Banki, Orissa, India
Аннотация:
This paper deals with a generalization of Hardy–Hilbert's inequality for non-homogeneous kernel by considering sequences $(s_n)$, $(t_n)$, the functions $\phi_p$, $\phi_q$ and parameter $\lambda$. This inequality generalizes both Hardy–Hilbert's inequality and Mulholland's inequality, which includes most of the recent results of this type. As applications, the equivalent form, some particular results and a generalized Hardy–Littlewood inequality are established.
Ключевые слова и фразы:
Hardy–Hilbert's inequality, Mulholland's inequality, $\beta$-function, Hölder's inequality.
Поступила в редакцию: 15.10.2010
Образец цитирования:
Namita Das, Srinibas Sahoo, “A generalization of Hardy–Hilbert's inequality for non-homogeneous kernel”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 3, 29–44
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm297 https://www.mathnet.ru/rus/basm/y2011/i3/p29
|
Статистика просмотров: |
Страница аннотации: | 207 | PDF полного текста: | 70 | Список литературы: | 53 | Первая страница: | 1 |
|