|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2009, номер 3, страницы 52–56
(Mi basm236)
|
|
|
|
Research articles
On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups
Natalia Lupashco Tiraspol State University, Departament of Mathematics, Chişinău, Moldova
Аннотация:
It is proved that if an infinite commutative Moufang loop $L$ has such an infinite subloop $H$ that in $L$ every associative subloop which has with $H$ an infinite intersection is a normal subloop then the loop $L$ is associative. It is also proved that if the multiplication group $\mathfrak M$ of infinite commutative Moufang loop $L$ has such an infinite subgroup $\mathfrak N$ that in $\mathfrak M$ every abelian subgroup which has with $\mathfrak N$ an infinite intersection is a normal subgroup then the loop $L$ is associative.
Ключевые слова и фразы:
commutative Moufang loop, multiplication group, infinite associative subloop, infinite abelian subgroup.
Поступила в редакцию: 27.02.2008
Образец цитирования:
Natalia Lupashco, “On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3, 52–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm236 https://www.mathnet.ru/rus/basm/y2009/i3/p52
|
Статистика просмотров: |
Страница аннотации: | 149 | PDF полного текста: | 43 | Список литературы: | 31 | Первая страница: | 1 |
|