|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2009, номер 2, страницы 29–54
(Mi basm225)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Research articles
A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
N. Gherstega, V. Orlov, N. Vulpe Institute of Mathematics and Computer Sciences, Academy of Sciences of Moldova, Chisinau, Moldova
Аннотация:
In this article we consider the action of the group $Aff(2,\mathbb R)$ of affine transformations and time rescaling on real planar quadratic differential systems. Via affine invariant conditions we give a complete stratification of this family of systems according to the dimension $\mathcal D$ of affine orbits proving that $3\le\mathcal D\le6$. Moreover we give a complete topological classification of all the systems located on the orbits of dimension $\mathcal D\le5$ constructing the affine invariant criteria for the realization of each of 49 possible topologically distinct phase portraits.
Ключевые слова и фразы:
quadratic differential system, Lie algebra of operators, $Aff(2,\mathbb R)$-orbit, affine invariant polynomial.
Поступила в редакцию: 18.06.2009
Образец цитирования:
N. Gherstega, V. Orlov, N. Vulpe, “A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2, 29–54
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm225 https://www.mathnet.ru/rus/basm/y2009/i2/p29
|
Статистика просмотров: |
Страница аннотации: | 353 | PDF полного текста: | 82 | Список литературы: | 51 | Первая страница: | 2 |
|