|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2008, номер 2, страницы 92–105
(Mi basm22)
|
|
|
|
Research articles
Resolvability of some special algebras with topologies
Liubomir Chiriac Department of Mathematics, Tiraspol State University
Аннотация:
Let $G$ be an infinite $I_nP$-$n$-groupoid. We construct a disjoint family $\{B_{\mu}:\mu\in M\}$ of non-empty subsets of $G$ such that the sets $\{B_{\mu}\}$ are dense in all Choban's totally bounded topologies on $G$, $|M|=|G|$, $G=\bigcup\{B_{\mu}:\mu\in M\}$ and $\bigcup_{k=1}^n\Delta_{\varphi}\omega(K^{k-1},G\setminus B_{\mu},K^{n-k})\ne G$ for all $\mu\in M$ and every finite subsets $K$ of $G$. In particular, we continue the line of research from [6, 9].
Ключевые слова и фразы:
Resolvability, $I_nP$-$n$-groupoid, bounded topology.
Поступила в редакцию: 25.04.2008
Образец цитирования:
Liubomir Chiriac, “Resolvability of some special algebras with topologies”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2, 92–105
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm22 https://www.mathnet.ru/rus/basm/y2008/i2/p92
|
|