|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2003, номер 3, страницы 58–70
(Mi basm207)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Research articles
Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system
E. V. Starus Institute of Mathematics and Computer Science, Chişinău, Moldova
Аннотация:
A two-dimensional system of two autonomous polynomial equations with homogeneities of the zero and third orders is considered concerning to the group of center-affine transformations $GL(2,R)$. The problem of the classification of $GL(2,R)$-orbit's dimensions is solved completely for the given system with the help of Lie algebra of operators corresponding to the $GL(2,R)$ group, and algebra of invariants and comitants for the indicated system is built. The theorem on invariant division of all coefficient's set of the considered system to nonintersecting $GL(2,R)$-invariant sets is obtained.
Ключевые слова и фразы:
Differential system, invariant, comitants, orbit's dimensions invariant sets.
Поступила в редакцию: 22.07.2003
Образец цитирования:
E. V. Starus, “Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 3, 58–70
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm207 https://www.mathnet.ru/rus/basm/y2003/i3/p58
|
|