|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2003, номер 2, страницы 51–58
(Mi basm197)
|
|
|
|
Research articles
On initial value problem in theory of the second order differential equations
Valerii Driumaa, Maxim Pavlovb a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău, Republic of Moldova
b Landau ITP, RAS, Moscow, Russia
Аннотация:
We consider the properties of the second order nonlinear differential equations $b''=g(a,b,b')$ with the function $g(a,b,b'=c)$ satisfying the following nonlinear partial differential equation
\begin{gather*}
g_{aacc}+2cg_{abcc}+2gg_{accc}+c^2g_{bbcc}+2cgg_{bccc}+g^2g_{cccc}+(g_a+cg_b)g_{ccc}-
\\
4g_{abc}-4cg_{bbc}-cg_{c}g_{bcc}-3gg_{bcc}-g_cg_{acc}+4g_cg_{bc}-3g_bg_{cc}+6g_{bb}=0.
\end{gather*}
Any equation $b''=g(a,b,b')$ with this condition on the function $g(a,b,b')$ has the General Integral $F(a,b,x,y)=0$ shared with General Integral of the second order ODE's $y''=f(x,y,y'')$ with the condition $\frac{\partial^4f}{\partial y^{\prime4}}=0$ on the function $f(x,y,y')$ or $y''+a_1(x,y){y'}^3+3a_2(x,y){y''}^2+3a_3(x,y)y'+a_4(x,y)=0$ with some coefficients $a_i(x,y)$.
Ключевые слова и фразы:
dual equation, space of linear elements, projective connection.
Поступила в редакцию: 20.11.2002
Образец цитирования:
Valerii Driuma, Maxim Pavlov, “On initial value problem in theory of the second order differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 2, 51–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm197 https://www.mathnet.ru/rus/basm/y2003/i2/p51
|
Статистика просмотров: |
Страница аннотации: | 306 | PDF полного текста: | 80 | Список литературы: | 52 | Первая страница: | 1 |
|