|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2004, номер 1, страницы 46–56
(Mi basm150)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Research articles
Transfer properties in radical theory
R. J. Gardner Discipline of Mathematics, University of Tasmania, Hobart Tas., Australia
Аннотация:
A functor is said to reflect radical classes if under this functor the inverse image of a radical class is always a radical class.Prototypical examples of such functors include polynomial and matrix functors and various forgetful functors.This paper is for the most part a survey of known results concerning radical reflections,but there are a few new results,including a generalization to right alternative rings of a well known result of Andrunakievici on upper radicals of simple associative rings.
Ключевые слова и фразы:
Radical,category suitable for radical theory,multioperator group, right alternative ring.
Поступила в редакцию: 12.12.2003
Образец цитирования:
R. J. Gardner, “Transfer properties in radical theory”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1, 46–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm150 https://www.mathnet.ru/rus/basm/y2004/i1/p46
|
|