|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2006, номер 2, страницы 95–101
(Mi basm101)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
N. T. Lupashco Tiraspol State University, Chişinău, Moldova
Аннотация:
Let $\mathfrak M$ be the multiplication group of a commutative Moufang loop $Q$. In this paper it is proved that if all infinite abelian subgroups of $\mathfrak M$ are normal in $\mathfrak M$, then $Q$ is associative. If all infinite nonabelian subgroups of $\mathfrak M$ are normal in $\mathfrak M$, then all nonassociative subloops of $Q$ are normal in $Q$, all nonabelian subgroups of $\frak M$ are normal in $\mathfrak M$ and the commutator subgroup $\mathfrak M'$ is a finite 3-group.
Ключевые слова и фразы:
Commutative Moufang loop, minimum condition, multiplication $IH$-group, multiplication $\overline{IH}$-group, metahamiltonian group.
Поступила в редакцию: 05.06.2006
Образец цитирования:
N. T. Lupashco, “On commutative Moufang loops with some restrictions for subgroups of its multiplication groups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2, 95–101
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm101 https://www.mathnet.ru/rus/basm/y2006/i2/p95
|
Статистика просмотров: |
Страница аннотации: | 198 | PDF полного текста: | 57 | Список литературы: | 38 | Первая страница: | 1 |
|