|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2008, номер 1, страницы 4–18
(Mi basm1)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
The transvectants and the integrals for Darboux systems of differential equations
V. Baltag, I. Calin Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Аннотация:
We apply the algebraic theory of invariants of differential equations to integrate the polynomial differential systems $dx/dt=P1_(x,y)+xC(x,y)$, $dy/dt=Q1_(x,y)+yC(x,y)$, where real homogeneous polynomials $P_1$ and $Q_1$ have the first degree and $C(x,y)$ is a real homogeneous polynomial of degree $r\ge 1$. In generic cases the invariant algebraic curves and the first integrals for these systems are constructed. The constructed invariant algebraic curves are expressed by comitants and invariants of investigated systems.
Ключевые слова и фразы:
Polynomial differential systems, Darboux integrability, first integrals, invariant algebraic curve, invariant, comitant, transvectant.
Поступила в редакцию: 10.01.2008
Образец цитирования:
V. Baltag, I. Calin, “The transvectants and the integrals for Darboux systems of differential equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1, 4–18
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm1 https://www.mathnet.ru/rus/basm/y2008/i1/p4
|
|