|
Автоматика и телемеханика, 1994, выпуск 4, страницы 13–22
(Mi at3877)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Детерминированные системы
Обратная спектральная задача Штурма–Лиувилля в теории реализации линейных динамических систем
B. Т. Борухов Институт математики АН Беларуси, Минск
Аннотация:
Одна из основных задач математической теории систем заключается в описании реализаций причинных отображений в пространстве состояний. По постановке она близка к обратной спектральной задаче Штурма–Лиувилля. Предпринимается попытка совместного рассмотрения обеих задач с позиций теории линейных динамических систем. Указываются связи между уравнениями Гельфанда–Левитана–Марченко–Крейна и факторизацией оператора Ганкеля динамической системы параболического типа. Предлагается системная интерпретация сплетающих операторов Ж. Дельсарта, Б. М. Левитана, В. М. Марченко, Б. Я. Левина.
Поступила в редакцию: 10.06.1993
Образец цитирования:
B. Т. Борухов, “Обратная спектральная задача Штурма–Лиувилля в теории реализации линейных динамических систем”, Автомат. и телемех., 1994, № 4, 13–22; Autom. Remote Control, 55:4 (1994), 467–474
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/at3877 https://www.mathnet.ru/rus/at/y1994/i4/p13
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF полного текста: | 95 | Первая страница: | 2 |
|