|
Стохастические системы
О преобразовании стационарного нечетко случайного процесса линейной динамической системой
В. Л. Хацкевич Военно-воздушная академия им. профессора Н.Е. Жуковского и Ю.А. Гагарина, Воронеж
Аннотация:
В данной работе изучены стационарные случайные процессы с нечеткими состояниями. Установлены свойства их числовых характеристик – нечетких ожиданий, ожиданий и ковариационных функций. Обосновано спектральное представление ковариационной функции – обобщенная теорема Винера–Хинчина. Основное внимание уделено задаче о преобразовании стационарного нечетко случайного процесса (сигнала) линейной динамической системой. Получены формулы, связывающие нечеткие ожидания (и ожидания) входных и выходных стационарных нечетко случайных процессов. Разработан и обоснован алгоритм вычисления ковариационной функции стационарного нечетко случайного процесса на выходе линейной динамической системы по ковариационной функции стационарного входного нечетко случайного процесса. Полученные результаты опираются на свойства нечетко случайных величин и числовых случайных процессов. В качестве примеров рассмотрены треугольные нечетко случайные процессы.
Ключевые слова:
стационарные случайные процессы, нечеткие состояния, нечеткие ожидания, ковариационные функции, преобразование нечетко случайного процесса линейной динамической системой.
Образец цитирования:
В. Л. Хацкевич, “О преобразовании стационарного нечетко случайного процесса линейной динамической системой”, Автомат. и телемех., 2024, № 4, 94–111
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/at16369 https://www.mathnet.ru/rus/at/y2024/i4/p94
|
Статистика просмотров: |
Страница аннотации: | 13 | PDF полного текста: | 1 | Список литературы: | 5 | Первая страница: | 2 |
|