Алгебра и логика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и логика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и логика, 1989, том 28, номер 5, страницы 534–554 (Mi al2075)  

Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)

Базис тождеств трехмерной простой алгебры Ли над бесконечным полем

С. Ю. Василовский
Аннотация: Доказано, что над любым бесконечным полем $k$ характеристики $\ne2$ тождества трехмерной простой алгебры Ли $sl_2(k)$ допускают базис, состоящий из одного тождества
$$ [y, z, [t, x], x]+[y, x, [z, x], t]=0. $$
В случае нулевой характеристики этот результат был ранее получен Ю. П. Размысловым и В. Т. Филипповым.
Поступило: 26.09.1988
Англоязычная версия:
Algebra and Logic
DOI: https://doi.org/10.1007/BF01979196
Реферативные базы данных:
Тип публикации: Статья
УДК: 512.554.33
Образец цитирования: С. Ю. Василовский, “Базис тождеств трехмерной простой алгебры Ли над бесконечным полем”, Алгебра и логика, 28:5 (1989), 534–554
Цитирование в формате AMSBIB
\RBibitem{Vas89}
\by С.~Ю.~Василовский
\paper Базис тождеств трехмерной простой алгебры Ли над бесконечным полем
\jour Алгебра и логика
\yr 1989
\vol 28
\issue 5
\pages 534--554
\mathnet{http://mi.mathnet.ru/al2075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1087571}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/al2075
  • https://www.mathnet.ru/rus/al/v28/i5/p534
  • Эта публикация цитируется в следующих 15 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024