|
Алгебра и логика, 1980, том 19, номер 5, страницы 566–581
(Mi al1700)
|
|
|
|
Конечные группы с заданным централизатором центральной инволюции
В. И. Зенков
Аннотация:
Изучаются конечные группы без разрешимых нормальных подгрупп, удовлетворяющие следующему условию: в централизаторе некоторой центральной инволюции $i$ ранг пересечений любых двух различных силовских $2$-подгрупп не превосходит $2$. В случае, когда централизатор $i$ не $2$-замкнут, дается полное описание строения группы. Случай, когда $C(i)$ $2$-замкнут, был изучен ранее Бауманом (РЖМат, 1979, 5А151).
Поступило: 23.10.1979
Образец цитирования:
В. И. Зенков, “Конечные группы с заданным централизатором центральной инволюции”, Алгебра и логика, 19:5 (1980), 566–581
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/al1700 https://www.mathnet.ru/rus/al/v19/i5/p566
|
Статистика просмотров: |
Страница аннотации: | 57 | PDF полного текста: | 33 |
|