|
Алгебра и логика, 1977, том 16, номер 2, страницы 149–183
(Mi al1555)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
О сложности нематричных многообразий ассоциативных алгебр. I
В. Н. Латышев
Аннотация:
Полилинейный многочлен от неперестановочных переменных, полученный путем применения некоторого дифференциального оператора к произведению $n$ правонормированных коммутаторов, называется элементарным тождеством сложности $n$. Нематричному многообразию, порожденному алгеброй с конечным числом порождающих над полем нулевой характеристики, приписывается сложность, равная минимальной сложности её элементарных полиномиальных тождеств. Доказывается, что многообразие, порожденное алгеброй верхнетреугольных матриц порядка $n$, обладает некоторым экстремальным свойством: его сложность равна $n$, а сложность всякого собственного подмногообразия строго меньше $n$.
Поступило: 23.02.1977
Образец цитирования:
В. Н. Латышев, “О сложности нематричных многообразий ассоциативных алгебр. I”, Алгебра и логика, 16:2 (1977), 149–183
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/al1555 https://www.mathnet.ru/rus/al/v16/i2/p149
|
Статистика просмотров: |
Страница аннотации: | 101 | PDF полного текста: | 52 |
|