|
Алгебра и логика, 1972, том 11, номер 5, страницы 571–587
(Mi al1352)
|
|
|
|
Некоторые свойства клеточных подалгебр алгебр Поста и их основных клеток
И. А. Мальцев
Аннотация:
Пусть ${\mathfrak P}_k$ — алгебра Поста конечного ранга $k$, ${\mathfrak P}_k^{(s)}$ — множество всех функций из ${\mathfrak P}_k$, принимающих не более $s$ значений, ${\mathfrak P}_k^{1\nabla}$ — множество всех функций из ${\mathfrak P}_k$, существенно зависящих не более чем от одного переменного. Алгебры ${\mathfrak P}_k\cup {\mathfrak P}_k^{1\nabla}$ $(2\leqslant s< k$) называются клеточными, а алгебры ${\mathfrak P}_k^{(3)}$ — их основными клетками. К клеточным алгебрам также относится алгебра ${\mathfrak L}$ квазилинейных функций, основной клеткой которой является алгебра ${\mathfrak L}^{(s)}$ всех функций из ${\mathfrak L}$, принимающих не более двух значений. Для каждой такой подалгебры найден порядок и минимальное число порождающих элементов, описаны некоторые классы предполных подалгебр. Для клеток получены нижние оценки числа предполных подалгебр. Задача нахождения всех предполных подалгебр клеточных алгебр сведена к задаче нахождения максимальных подгрупп симметрической группы степени $k$.
Поступило: 15.06.1972
Образец цитирования:
И. А. Мальцев, “Некоторые свойства клеточных подалгебр алгебр Поста и их основных клеток”, Алгебра и логика, 11:5 (1972), 571–587
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/al1352 https://www.mathnet.ru/rus/al/v11/i5/p571
|
|