|
Algebra and Discrete Mathematics, 2012, том 14, выпуск 1, страницы 145–160
(Mi adm89)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
Yulia Zhykharyeva, Mykola Pratsiovytyi Physics and Mathematics Institute, Dragomanov National Pedagogical University, Pyrogova St. 9, 01601 Kyiv, Ukraine
Аннотация:
We describe the geometry of representation of numbers belonging to $(0,1]$ by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff–Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of $L$-representation to probabilistic theory of numbers are also considered.
Ключевые слова:
Lüroth series, $L$-representation, cylinder, semicylinder, shift operator, random variable defined by $L$-representation, fractal, Hausdorff–Besicovitch dimension.
Поступила в редакцию: 02.07.2012 Принята в печать: 02.07.2012
Образец цитирования:
Yulia Zhykharyeva, Mykola Pratsiovytyi, “Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers”, Algebra Discrete Math., 14:1 (2012), 145–160
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm89 https://www.mathnet.ru/rus/adm/v14/i1/p145
|
Статистика просмотров: |
Страница аннотации: | 229 | PDF полного текста: | 130 | Список литературы: | 52 | Первая страница: | 1 |
|