|
RESEARCH ARTICLE
On the nilpotence of the prime radical in module categories
C. Arellanoa, J. Castrob, J. Ríosa a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigaci on Científica, Circuito Exterior, C.U., 04510 México, D.F. México
b Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Tlalpan, 14380 México, D.F. México
Аннотация:
For $M\in R$-Mod and $\tau$ a hereditary torsion theory on the category $\sigma [M]$ we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of $\tau$-pure prime radical $\mathfrak{N}_{\tau}(M) =\mathfrak{N}_{\tau}$ as the intersection of all $\tau$-pure prime submodules of $M$. We give necessary and sufficient conditions for the $\tau$-nilpotence of $\mathfrak{N}_{\tau}(M) $. We prove that if $M$ is a finitely generated $R$-module, progenerator in $\sigma [M]$ and $\chi\neq \tau$ is FIS-invariant torsion theory such that $M$ has $\tau$-Krull dimension, then $\mathfrak{N}_{\tau}$ is $\tau$-nilpotent.
Ключевые слова:
prime modules, semiprime modules, Goldie modules, torsion theory, nilpotent ideal, nilpotence.
Поступила в редакцию: 04.06.2020 Исправленный вариант: 06.01.2021
Образец цитирования:
C. Arellano, J. Castro, J. Ríos, “On the nilpotence of the prime radical in module categories”, Algebra Discrete Math., 32:2 (2021), 161–184
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm813 https://www.mathnet.ru/rus/adm/v32/i2/p161
|
Статистика просмотров: |
Страница аннотации: | 82 | PDF полного текста: | 23 | Список литературы: | 14 |
|