|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Clean coalgebras and clean comodules of finitely generated projective modules
N. P. Puspita, I. E. Wijayanti, B. Surodjo Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
Аннотация:
Let $R$ be a commutative ring with multiplicative identity and $P$ is a finitely generated projective $R$-module. If $P^{\ast}$ is the set of $R$-module homomorphism from $P$ to $R$, then the tensor product $P^{\ast}\otimes_{R}P$ can be considered as an $R$-coalgebra. Furthermore, $P$ and $P^{\ast}$ is a comodule over coalgebra $P^{\ast}\otimes_{R}P$. Using the Morita context, this paper give sufficient conditions of clean coalgebra $P^{\ast}\otimes_{R}P$ and clean $P^{\ast}\otimes_{R}P$-comodule $P$ and $P^{\ast}$. These sufficient conditions are determined by the conditions of module $P$ and ring $R$.
Ключевые слова:
clean coalgebra, clean comodule, finitely generated projective module, Morita context.
Поступила в редакцию: 10.07.2019 Исправленный вариант: 23.10.2020
Образец цитирования:
N. P. Puspita, I. E. Wijayanti, B. Surodjo, “Clean coalgebras and clean comodules of finitely generated projective modules”, Algebra Discrete Math., 31:2 (2021), 251–260
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm799 https://www.mathnet.ru/rus/adm/v31/i2/p251
|
Статистика просмотров: |
Страница аннотации: | 48 | PDF полного текста: | 29 | Список литературы: | 22 |
|