|
RESEARCH ARTICLE
On small world non-Sunada twins and cellular Voronoi diagrams
V. Ustimenkoab a Institute of Telecommunications and Global Information Space, NAS of Ukraine, Ukraine
b Institute of Mathematics, Maria Curie-Skłdowska University, Poland
Аннотация:
Special infinite families of regular graphs of unbounded degree and of bounded diameter (small world graphs) are considered. Two families of small world graphs $G_i$ and $H_i$ form a family of non-Sunada twins if $G_i$ and $H_i$ are isospectral of bounded diameter but groups $\mathrm{Aut}(G_i)$ and $\mathrm{Aut}(H_i)$ are nonisomorphic.
We say that a family of non-Sunada twins is unbalanced if each $G_i$ is edge-transitive but each $H_i$ is edge-intransitive. If all $G_i$ and $H_i$ are edge-transitive we have a balanced family of small world non-Sunada twins. We say that a family of non-Sunada twins is strongly unbalanced if each $G_i$ is edge-transitive but each $H_i$ is edge-intransitive.
We use term edge disbalanced for the family of non-Sunada twins such that all graphs $G_i$ and $H_i$ are edge-intransitive. We present explicit constructions of the above defined families. Two new families of distance-regular—but not distance-transitive—graphs will be introduced.
Ключевые слова:
Laplacians, isospectral graphs, small world graphs, distance-regular graphs, non-Sunada constructions, graph Voronoi diagram, thin Voronoi cells.
Поступила в редакцию: 20.02.2019 Исправленный вариант: 12.12.2020
Образец цитирования:
V. Ustimenko, “On small world non-Sunada twins and cellular Voronoi diagrams”, Algebra Discrete Math., 30:1 (2020), 118–142
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm769 https://www.mathnet.ru/rus/adm/v30/i1/p118
|
Статистика просмотров: |
Страница аннотации: | 74 | PDF полного текста: | 61 | Список литературы: | 23 |
|