|
RESEARCH ARTICLE
The containment poset of type $A$ Hessenberg varieties
E. Drellich Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA 19081
Аннотация:
Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element $X$ of the Lie algebra $\mathfrak{g}$ and a Hessenberg subspace $H\subseteq \mathfrak{g}$. This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with $X$. To answer this question we present the containment poset $\mathcal{P}_X$ of type $A$ Hessenberg varieties with a fixed first parameter $X$ and give a simple and elegant proof that if $X$ is not a multiple of the element $\mathbf 1$ then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on $\mathcal{P}_X$ that induces a homeomorphism of varieties and prove additional properties of $\mathcal{P}_X$ when $X$ is a regular nilpotent element.
Ключевые слова:
Hessenberg variety, root space, poset.
Поступила в редакцию: 17.07.2018 Исправленный вариант: 02.09.2018
Образец цитирования:
E. Drellich, “The containment poset of type $A$ Hessenberg varieties”, Algebra Discrete Math., 29:2 (2020), 195–210
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm752 https://www.mathnet.ru/rus/adm/v29/i2/p195
|
|