|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Linear groups saturated by subgroups of finite central dimension
N. N. Semko, L. V. Skaskiv, O. A. Yarovaya Department of Mathematics, University of State Fiscal Service of Ukraine, Universytetska street 31, Irpin, Kyiv region, Ukraine
Аннотация:
Let $F$ be a field, $A$ be a vector space over $F$ and $G$ be a subgroup of $\mathrm{GL}(F,A)$. We say that $G$ has a dense family of subgroups, having finite central dimension, if for every pair of subgroups $H$, $K$ of $G$ such that $H\leqslant K$ and $H$ is not maximal in $K$ there exists a subgroup $L$ of finite central dimension such that $H\leqslant L\leqslant K$. In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
Ключевые слова:
linear group, infinite group, infinite dimensional linear group, dense family of subgroups, locally soluble group, finite central dimension.
Поступила в редакцию: 13.01.2019
Образец цитирования:
N. N. Semko, L. V. Skaskiv, O. A. Yarovaya, “Linear groups saturated by subgroups of finite central dimension”, Algebra Discrete Math., 29:1 (2020), 117–128
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm744 https://www.mathnet.ru/rus/adm/v29/i1/p117
|
|