|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Finite groups with semi-subnormal Schmidt subgroups
V. N. Knyagina, V. S. Monakhov Department of Mathematics, Francisk Skorina Gomel State University,
Sovetskaya str., 104, Gomel 246019, Belarus
Аннотация:
A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup $A$ of a group $G$ is semi-normal in $G$ if there exists a subgroup $B$ of $G$ such that $G=AB$ and $AB_1$ is a proper subgroup of $G$ for every proper subgroup $B_1$ of $B$. If $A$ is either subnormal in $G$ or is semi-normal in $G$, then $A$ is called a semi-subnormal subgroup of $G$. In this paper, we establish that a group $G$ with semi-subnormal Schmidt $\{2,3\}$-subgroups is $3$-soluble. Moreover, if all 5-closed Schmidt $\{2,5\}$-subgroups are semi-subnormal in $G$, then $G$ is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent.
Ключевые слова:
finite soluble group, Schmidt subgroup, semi-normal subgroup, subnormal subgroup.
Поступила в редакцию: 23.04.2019
Образец цитирования:
V. N. Knyagina, V. S. Monakhov, “Finite groups with semi-subnormal Schmidt subgroups”, Algebra Discrete Math., 29:1 (2020), 66–73
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm739 https://www.mathnet.ru/rus/adm/v29/i1/p66
|
Статистика просмотров: |
Страница аннотации: | 218 | PDF полного текста: | 64 | Список литературы: | 30 |
|