|
Algebra and Discrete Mathematics, 2019, том 27, выпуск 2, страницы 292–308
(Mi adm709)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
On some Leibniz algebras having small dimension
Viktoriia S. Yashchuk Department of Geometry and Algebra, Faculty of Mechanics and Mathematics, Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine
Аннотация:
The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1- and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields. In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on.
Ключевые слова:
Leibniz algebra, ideal, factor-algebra, Leibniz kernel, finite dimensional Leibniz algebra, nilpotent Leibniz algebra, left (right) center, Frattini subalgebra.
Поступила в редакцию: 28.02.2018 Исправленный вариант: 22.03.2018
Образец цитирования:
Viktoriia S. Yashchuk, “On some Leibniz algebras having small dimension”, Algebra Discrete Math., 27:2 (2019), 292–308
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm709 https://www.mathnet.ru/rus/adm/v27/i2/p292
|
Статистика просмотров: |
Страница аннотации: | 118 | PDF полного текста: | 47 | Список литературы: | 19 |
|