|
Algebra and Discrete Mathematics, 2019, том 27, выпуск 2, страницы 252–268
(Mi adm706)
|
|
|
|
RESEARCH ARTICLE
On the lattice of cyclic codes over finite chain rings
Alexandre Fotue-Tabuea, Christophe Mouahab a Department of Mathematics, Faculty of Science, University of Yaoundé 1, Cameroon
b Department of Mathematics, Higher Teachers Training College, University of Yaoundé 1, Cameroon
Аннотация:
In this paper, $R$ is a finite chain ring of invariants $(q,s)$, and $\ell$ is a positive integer fulfilling $\operatorname{gcd}(\ell,q) = 1$. In the language of $q$-cyclotomic cosets modulo $\ell$, the cyclic codes over $R$ of length $\ell$ are uniquely decomposed into a direct sum of trace-representable cyclic codes over $R$ and the lattice of cyclic codes over $R$ of length $\ell$ is investigated.
Ключевые слова:
finite chain rings, cyclotomic cosets, linear code, cyclic code, trace map.
Поступила в редакцию: 16.03.2017
Образец цитирования:
Alexandre Fotue-Tabue, Christophe Mouaha, “On the lattice of cyclic codes over finite chain rings”, Algebra Discrete Math., 27:2 (2019), 252–268
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm706 https://www.mathnet.ru/rus/adm/v27/i2/p252
|
|