|
Algebra and Discrete Mathematics, 2019, том 27, выпуск 2, страницы 243–251
(Mi adm705)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Solutions of the matrix linear bilateral polynomial equation and their structure
Nataliia S. Dzhaliuk, Vasyl' M. Petrychkovych Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, Department of Algebra, 3b, Naukova Str., L'viv, 79060, Ukraine
Аннотация:
We investigate the row and column structure of solutions of the matrix polynomial equation
$$
A(\lambda)X(\lambda)+Y(\lambda)B(\lambda)=C(\lambda),
$$
where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are the matrices over the ring of polynomials $\mathcal{F}[\lambda]$ with coefficients in field $\mathcal{F}$. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices $A (\lambda)$ and $ B(\lambda)$. A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices $A(\lambda)$ and $ B(\lambda)$.
Ключевые слова:
matrix polynomial equation, solution, polynomial matrix, semiscalar equivalence.
Поступила в редакцию: 02.07.2018 Исправленный вариант: 05.12.2018
Образец цитирования:
Nataliia S. Dzhaliuk, Vasyl' M. Petrychkovych, “Solutions of the matrix linear bilateral polynomial equation and their structure”, Algebra Discrete Math., 27:2 (2019), 243–251
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm705 https://www.mathnet.ru/rus/adm/v27/i2/p243
|
Статистика просмотров: |
Страница аннотации: | 116 | PDF полного текста: | 101 | Список литературы: | 30 |
|