|
Algebra and Discrete Mathematics, 2019, том 27, выпуск 2, страницы 155–164
(Mi adm700)
|
|
|
|
RESEARCH ARTICLE
A family of doubly stochastic matrices involving Chebyshev polynomials
Tanbir Ahmed, José M. R. Caballero LaCIM, UQÁM, Montréal, Canada
Аннотация:
A doubly stochastic matrix is a square matrix $A=(a_{ij})$ of non-negative real numbers such that $\sum_{i}a_{ij}=\sum_{j}a_{ij}=1$. The Chebyshev polynomial of the first kind is defined by the recurrence relation $T_0(x)=1$, $T_1(x)=x$, and
$$
T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).
$$
In this paper, we show a $2^k\times 2^k$ (for each integer $k\geq 1$) doubly stochastic matrix whose characteristic polynomial is $x^2-1$ times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers).
Ключевые слова:
doubly stochastic matrices, Chebyshev polynomials.
Поступила в редакцию: 25.10.2017 Исправленный вариант: 29.12.2017
Образец цитирования:
Tanbir Ahmed, José M. R. Caballero, “A family of doubly stochastic matrices involving Chebyshev polynomials”, Algebra Discrete Math., 27:2 (2019), 155–164
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm700 https://www.mathnet.ru/rus/adm/v27/i2/p155
|
|