|
Algebra and Discrete Mathematics, 2018, том 26, выпуск 1, страницы 130–143
(Mi adm676)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case
P. Vadhel, S. Visweswaran Department of Mathematics, Saurashtra University, Rajkot, 360 005 India
Аннотация:
The rings considered in this article are nonzero commutative with identity which are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Recall that the intersection graph of ideals of $R$, denoted by $G(R)$, is an undirected graph whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $I\cap J\neq (0)$. In this article, we consider a subgraph of $G(R)$, denoted by $H(R)$, whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent in $H(R)$ if and only if $IJ\neq (0)$. The purpose of this article is to characterize rings $R$ with at least two maximal ideals such that $H(R)$ is planar.
Ключевые слова:
quasilocal ring, special principal ideal ring, clique number of a graph, planar graph.
Поступила в редакцию: 22.09.2015 Исправленный вариант: 24.08.2018
Образец цитирования:
P. Vadhel, S. Visweswaran, “Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case”, Algebra Discrete Math., 26:1 (2018), 130–143
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm676 https://www.mathnet.ru/rus/adm/v26/i1/p130
|
Статистика просмотров: |
Страница аннотации: | 179 | PDF полного текста: | 77 | Список литературы: | 31 |
|