|
Algebra and Discrete Mathematics, 2018, том 25, выпуск 1, страницы 39–55
(Mi adm643)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Construction of a complementary quasiorder
Danica Jakubíková-Studenovská, Lucia Janičková Institute of Mathematics, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic
Аннотация:
For a monounary algebra $\mathcal{A}=(A,f)$ we study the lattice $\operatorname{Quord}\mathcal{A}$ of all quasiorders of $\mathcal{A}$, i.e., of all reflexive and transitive relations compatible with $f$. Monounary algebras $(A, f)$ whose lattices of quasiorders are complemented were characterized in 2011 as follows: ($*$) $f(x)$ is a cyclic element for all $x \in A$, and all cycles have the same square-free number $n$ of elements. Sufficiency of the condition ($*$) was proved by means of transfinite induction. Now we will describe a construction of a complement to a given quasiorder of $(A, f)$ satisfying ($*$).
Ключевые слова:
monounary algebra, quasiorder, lattice, complement, complemented lattice.
Поступила в редакцию: 02.11.2016 Исправленный вариант: 28.08.2017
Образец цитирования:
Danica Jakubíková-Studenovská, Lucia Janičková, “Construction of a complementary quasiorder”, Algebra Discrete Math., 25:1 (2018), 39–55
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm643 https://www.mathnet.ru/rus/adm/v25/i1/p39
|
Статистика просмотров: |
Страница аннотации: | 135 | PDF полного текста: | 41 | Список литературы: | 18 |
|