|
Algebra and Discrete Mathematics, 2018, том 25, выпуск 1, страницы 18–26
(Mi adm640)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Global outer connected domination number of a graph
Morteza Alishahia, Doost Ali Mojdehb a Department of Mathematics, University of Tafresh, Tafresh, Iran
b Department of Mathematics, University of Mazandaran, Babolsar, Iran
Аннотация:
For a given graph $G=(V,E)$, a dominating set $D \subseteq V(G)$ is said to be an outer connected dominating set if $D=V(G)$ or $G-D$ is connected. The outer connected domination number of a graph $G$, denoted by $\widetilde{\gamma}_c(G)$, is the cardinality of a minimum outer connected dominating set of $G$. A set $S \subseteq V(G)$ is said to be a global outer connected dominating set of a graph $G$ if $S$ is an outer connected dominating set of $G$ and $\overline G$. The global outer connected domination number of a graph $G$, denoted by $\widetilde{\gamma}_{gc}(G)$, is the cardinality of a minimum global outer connected dominating set of $G$. In this paper we obtain some bounds for outer connected domination numbers and global outer connected domination numbers of graphs. In particular, we show that for connected graph $G\ne K_1$, $ \max\{{n-\frac{m+1}{2}}, \frac{5n+2m-n^2-2}{4}\} \leq \widetilde{\gamma}_{gc}(G) \leq \min\{m(G),m(\overline G)\}$. Finally, under the conditions, we show the equality of global outer connected domination numbers and outer connected domination numbers for family of trees.
Ключевые слова:
global domination, outer connected domination, global outer connected domination, trees.
Поступила в редакцию: 11.12.2015
Образец цитирования:
Morteza Alishahi, Doost Ali Mojdeh, “Global outer connected domination number of a graph”, Algebra Discrete Math., 25:1 (2018), 18–26
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm640 https://www.mathnet.ru/rus/adm/v25/i1/p18
|
Статистика просмотров: |
Страница аннотации: | 282 | PDF полного текста: | 98 | Список литературы: | 23 |
|