|
Algebra and Discrete Mathematics, 2012, том 13, выпуск 1, страницы 26–42
(Mi adm63)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
RESEARCH ARTICLE
Algebra in superextensions of semilattices
Taras Banakhab, Volodymyr Gavrylkivc a Ivan Franko National University of Lviv, Ukraine
b Jan Kochanowski University, Kielce, Poland
c Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Аннотация:
Given a semilattice $X$ we study the algebraic properties of the semigroup $\upsilon(X)$ of upfamilies on $X$. The semigroup $\upsilon(X)$ contains the Stone–Čech extension $\beta(X)$, the superextension $\lambda(X)$, and the space of filters $\varphi(X)$ on $X$ as closed subsemigroups. We prove that $\upsilon(X)$ is a semilattice iff $\lambda(X)$ is a semilattice iff $\varphi(X)$ is a semilattice iff the semilattice $X$ is finite and linearly ordered. We prove that the semigroup $\beta(X)$ is a band if and only if $X$ has no infinite antichains, and the semigroup $\lambda(X)$ is commutative if and only if $X$ is a bush with finite branches.
Ключевые слова:
semilattice, band, commutative semigroup, the space of upfamilies, the space of filters, the space of maximal linked systems, superextension.
Поступила в редакцию: 05.10.2011 Исправленный вариант: 19.01.2012
Образец цитирования:
Taras Banakh, Volodymyr Gavrylkiv, “Algebra in superextensions of semilattices”, Algebra Discrete Math., 13:1 (2012), 26–42
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm63 https://www.mathnet.ru/rus/adm/v13/i1/p26
|
Статистика просмотров: |
Страница аннотации: | 309 | PDF полного текста: | 167 | Список литературы: | 53 | Первая страница: | 1 |
|