|
Algebra and Discrete Mathematics, 2017, том 24, выпуск 1, страницы 99–105
(Mi adm621)
|
|
|
|
RESEARCH ARTICLE
On divergence and sums of derivations
E. Chapovsky, O. Shevchyk Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine
Аннотация:
Let $K$ be an algebraically closed field of characteristic zero and $A$ a field of algebraic functions in $n$ variables over $\mathbb K$. (i.e. $A$ is a finite dimensional algebraic extension of the field $\mathbb K(x_1, \ldots, x_n)$ ). If $D$ is a $\mathbb K$-derivation of $A$, then its divergence $\operatorname{div} D$ is an important geometric characteristic of $D$ ($D$ can be considered as a vector field with coefficients in $A$). A relation between expressions of $\operatorname{div} D$ in different transcendence bases of $A$ is pointed out. It is also proved that every divergence-free derivation $D$ on the polynomial ring $\mathbb K[x, y, z]$ is a sum of at most two jacobian derivation.
Ключевые слова:
polynomial ring, derivation, divergence, jacobian derivation, transcendence basis.
Поступила в редакцию: 05.12.2016 Исправленный вариант: 07.12.2016
Образец цитирования:
E. Chapovsky, O. Shevchyk, “On divergence and sums of derivations”, Algebra Discrete Math., 24:1 (2017), 99–105
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm621 https://www.mathnet.ru/rus/adm/v24/i1/p99
|
|