|
Algebra and Discrete Mathematics, 2012, том 13, выпуск 1, страницы 18–25
(Mi adm62)
|
|
|
|
RESEARCH ARTICLE
On $S$-quasinormally embedded subgroups of finite groups
Kh. A. Al-Sharoa, Olga Shemetkovab, Xiaolan Yic a Al al-Bayt University, St. Al-Zohoor 5–3, Mafraq 25113, Jordan
b Russian Economic University named after G. V. Plekhanov, Stremyanny Per., 36, 117997 Moscow, Russia
c Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
Аннотация:
Let $G$ be a finite group. A subgroup $A$ is called:
1) $S$-quasinormal in $G$ if $A$ is permutable with all Sylow subgroups in $G$
2) $S$-quasinormally embedded in $G$ if every Sylow subgroup of $A$ is a Sylow subgroup of some
$S$-quasinormal subgroup of $G$. Let $B_{seG}$ be the subgroup generated by all the
subgroups of $B$ which are
$S$-quasinormally embedded in $G$.
A subgroup $B$ is called $SE$-supplemented in $G$ if there exists a
subgroup $T$ such that $G=BT$ and
$B\cap T\le B_{seG}$. The main result of the paper is the
following.
Theorem. Let $H$ be a normal subgroup in $G$, and $p$
a prime divisor of $|H|$ such that $(p-1,|H|)=1$.
Let $P$ be a Sylow $p$-subgroup in $H$. Assume
that all maximal subgroups in $P$ are $SE$-supplemented in $G$. Then $H$
is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.
Ключевые слова:
Finite group, $p$-nilpotent, $S$-quasinormal subgroup.
Поступила в редакцию: 31.01.2012 Принята в печать: 31.01.2012
Образец цитирования:
Kh. A. Al-Sharo, Olga Shemetkova, Xiaolan Yi, “On $S$-quasinormally embedded subgroups of finite groups”, Algebra Discrete Math., 13:1 (2012), 18–25
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm62 https://www.mathnet.ru/rus/adm/v13/i1/p18
|
Статистика просмотров: |
Страница аннотации: | 315 | PDF полного текста: | 117 | Список литературы: | 68 | Первая страница: | 1 |
|