|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 2, страницы 305–311
(Mi adm612)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
A note on Hall $S$-permutably embedded subgroups of finite groups
Darya A. Sinitsa Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str., 104, Gomel, 246019, Republic of Belarus
Аннотация:
Let $G$ be a finite group. Recall that a subgroup $A$ of $G$ is said to permute with a subgroup $B$ if $AB=BA$. A subgroup $A$ of $G$ is said to be $S$-quasinormal or $S$-permutable in $G$ if $A$ permutes with all Sylow subgroups of $G$. Recall also that $H^{s G}$ is the $S$-permutable closure of $H$ in $G$, that is, the intersection of all such $S$-permutable subgroups of $G$ which contain $H$. We say that $H$ is Hall $S$-permutably embedded in $G$ if $H$ is a Hall subgroup of the $S$-permutable closure $ H^{s G} $ of $H$ in $G$.
We prove that the following conditions are equivalent:
(1) every subgroup of $G$ is Hall $S$-permutably embedded in $G$;
(2) the nilpotent residual $G^{\mathfrak{N}}$ of $G$ is a Hall cyclic of square-free order subgroup of $G$;
(3) $G = D \rtimes M$ is a split extension of a cyclic subgroup $D$ of square-free order by a nilpotent group $M$, where $M$ and $D$ are both Hall subgroups of $G$.
Ключевые слова:
$S$-permutable subgroup, Hall $S$-permutably embedded subgroup, $S$-permutable closure, Sylow subgroup, supersoluble group, maximal subgroup.
Поступила в редакцию: 26.01.2016 Исправленный вариант: 05.12.2016
Образец цитирования:
Darya A. Sinitsa, “A note on Hall $S$-permutably embedded subgroups of finite groups”, Algebra Discrete Math., 23:2 (2017), 305–311
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm612 https://www.mathnet.ru/rus/adm/v23/i2/p305
|
Статистика просмотров: |
Страница аннотации: | 190 | PDF полного текста: | 71 | Список литературы: | 43 |
|