|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 2, страницы 279–284
(Mi adm610)
|
|
|
|
RESEARCH ARTICLE
On recurrence in $G$-spaces
Igor Protasov, Ksenia Protasova Department of Cybernetics, Kyiv National University, Volodymirska 64, Kyiv 01033, Ukraine
Аннотация:
We introduce and analyze the following general concept of recurrence. Let $G$ be a group and let $X$ be a G-space with the action $G\times X\longrightarrow X$, $(g,x)\longmapsto gx$. For a family $\mathfrak{F}$ of subset of $X$ and $A\in \mathfrak{F}$, we denote $\Delta_{\mathfrak{F}}(A)=\{g\in G\colon gB\subseteq A$ for some $B\in \mathfrak{F}$, $B\subseteq A\}$, and say that a subset $R$ of $G$ is $\mathfrak{F}$-recurrent if $R\bigcap \Delta_{\mathfrak{F}} (A)\neq\emptyset$ for each $A\in \mathfrak{F}$.
Ключевые слова:
$G$-space, recurrent subset, ultrafilters, Stone-Čech compactification.
Поступила в редакцию: 04.02.2017
Образец цитирования:
Igor Protasov, Ksenia Protasova, “On recurrence in $G$-spaces”, Algebra Discrete Math., 23:2 (2017), 279–284
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm610 https://www.mathnet.ru/rus/adm/v23/i2/p279
|
|