|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 2, страницы 237–248
(Mi adm607)
|
|
|
|
RESEARCH ARTICLE
Generators and ranks in finite partial transformation semigroups
Goje Uba Garba, Abdussamad Tanko Imam Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria
Аннотация:
We extend the concept of path-cycles, defined in [2], to the semigroup $\mathcal{P}_{n}$, of all partial maps on $X_{n}=\{1,2,\ldots,n\}$, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of $\mathcal{P}_{n}$ by means of path-cycles. The device is used to obtain information about generating sets for the semigroup $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$, of all singular partial maps of $X_{n}$. Moreover, by analogy with [3], we give a definition for the ($m,r$)-rank of $\mathcal{P}_{n}\setminus\mathcal{S}_{n}$ and show that it is $\frac{n(n+1)}{2}$.
Ключевые слова:
path-cycle, $(m,r)$-path-cycle, $m$-path, generating set, $(m,r)$-rank.
Поступила в редакцию: 20.12.2015 Исправленный вариант: 03.04.2016
Образец цитирования:
Goje Uba Garba, Abdussamad Tanko Imam, “Generators and ranks in finite partial transformation semigroups”, Algebra Discrete Math., 23:2 (2017), 237–248
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm607 https://www.mathnet.ru/rus/adm/v23/i2/p237
|
Статистика просмотров: |
Страница аннотации: | 129 | PDF полного текста: | 214 | Список литературы: | 37 |
|