|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 2, страницы 197–203
(Mi adm602)
|
|
|
|
SURVEY ARTICLE
A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups
James. C. Beidleman Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, KY (USA)
Аннотация:
Let $G$ be a group and $p$ a prime number. $G$ is said to be a $Y_p$-group if whenever $K$ is a $p$-subgroup of $G$ then every subgroup of $K$ is an $S$-permutable subgroup in $N_G(K)$. The group $G$ is a soluble $\mathrm{PST}$-group if and only if $G$ is a $Y_p$-group for all primes $p$.
One of our purposes here is to define a number of local properties related to $Y_p$ which lead to several new characterizations of soluble $\mathrm{PST}$-groups. Another purpose is to define several embedding subgroup properties which yield some new classes of soluble $\mathrm{PST}$-groups. Such properties include weakly S-permutable subgroup, weakly semipermutable subgroup, and weakly seminormal subgroup.
Ключевые слова:
$\mathrm{S}$-permutable subgroup, semipermutable subgroup, seminormal subgroup, $\mathrm{PST}$-group.
Поступила в редакцию: 07.01.2017
Образец цитирования:
James. C. Beidleman, “A survey article on some subgroup embeddings and local properties for soluble $\mathrm{PST}$-groups”, Algebra Discrete Math., 23:2 (2017), 197–203
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm602 https://www.mathnet.ru/rus/adm/v23/i2/p197
|
|