|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 1, страницы 47–61
(Mi adm596)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
On the representation type of Jordan basic algebras
Iryna Kashubaa, Serge Ovsienkob, Ivan Shestakova a Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo 05311-970, Brasil
b Faculty of Mechanics and Mathematics, Kiev Taras Shevchenko University, Volodymyrska St, 60, Kyiv, 01033 Ukraine
Аннотация:
A finite dimensional Jordan algebra $J$ over a field $\mathbf{k}$ is called basic if the quotient algebra $J/\operatorname{Rad} J$ is isomorphic to a direct sum of copies of $\mathbf{k}$. We describe all basic Jordan algebras $J$ with $(\operatorname{Rad} J)^2=0$ of finite and tame representation type over an algebraically closed field of characteristic 0.
Ключевые слова:
Jordan algebra, Jordan bimodule, representation type, quiver of an algebra.
Поступила в редакцию: 28.03.2017
Образец цитирования:
Iryna Kashuba, Serge Ovsienko, Ivan Shestakov, “On the representation type of Jordan basic algebras”, Algebra Discrete Math., 23:1 (2017), 47–61
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm596 https://www.mathnet.ru/rus/adm/v23/i1/p47
|
|