|
Algebra and Discrete Mathematics, 2017, том 23, выпуск 1, страницы 35–46
(Mi adm595)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
SURVEY ARTICLE
Galois orders of symmetric differential operators
Vyacheslav Futorny, João Schwarz Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, Brasil
Аннотация:
In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras. In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for $\mathrm{gl}_n$ and $\mathrm{sl}_n$ in [18] and [21], respectively. We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.
Ключевые слова:
Weyl algebra, invariant differential operators, Galois order, filed of fractions.
Поступила в редакцию: 21.03.2017
Образец цитирования:
Vyacheslav Futorny, João Schwarz, “Galois orders of symmetric differential operators”, Algebra Discrete Math., 23:1 (2017), 35–46
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm595 https://www.mathnet.ru/rus/adm/v23/i1/p35
|
|