|
Algebra and Discrete Mathematics, 2016, том 22, выпуск 2, страницы 304–316
(Mi adm590)
|
|
|
|
Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)
RESEARCH ARTICLE
Free $n$-dinilpotent doppelsemigroups
Anatolii V. Zhuchoka, Milan Demkob a Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, Starobilsk, 92703, Ukraine
b Department of Physics, Mathematics and Techniques, University of Presov, Slovakia, 17. novembra 1, Presov, 08116, Slovakia
Аннотация:
A doppelalgebra is an algebra defined on a vector space with two binary linear associative operations. Doppelalgebras play a prominent role in algebraic $K$-theory. In this paper we consider doppelsemigroups, that is, sets with two binary associative operations satisfying the axioms of a doppelalgebra. We construct a free $n$-dinilpotent doppelsemigroup and study separately free $n$-dinilpotent doppelsemigroups of rank $1$. Moreover, we characterize the least $n$-dinilpotent congruence on a free doppelsemigroup, establish that the semigroups of the free $n$-dinilpotent doppelsemigroup are isomorphic and the automorphism group of the free $n$-dinilpotent doppelsemigroup is isomorphic to the symmetric group. We also give different examples of doppelsemigroups and prove that a system of axioms of a doppelsemigroup is independent.
Ключевые слова:
doppelalgebra, interassociativity, doppelsemigroup, free $n$-dinilpotent doppelsemigroup, free doppelsemigroup, semigroup, congruence.
Поступила в редакцию: 03.10.2016 Исправленный вариант: 30.11.2016
Образец цитирования:
Anatolii V. Zhuchok, Milan Demko, “Free $n$-dinilpotent doppelsemigroups”, Algebra Discrete Math., 22:2 (2016), 304–316
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm590 https://www.mathnet.ru/rus/adm/v22/i2/p304
|
Статистика просмотров: |
Страница аннотации: | 287 | PDF полного текста: | 86 | Список литературы: | 57 |
|