|
Algebra and Discrete Mathematics, 2011, том 12, выпуск 1, страницы 69–115
(Mi adm58)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
RESEARCH ARTICLE
Graded limits of minimal affinizations and beyond: the multiplicity free case for type $E_6$
Adriano Moura, Fernanda Pereira Departamento de Matemática, Universidade Estadual
de Campinas, Campinas - SP - Brazil, 13083-859
Аннотация:
We obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type $E_6$. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
Ключевые слова:
minimal affinizations of quantum groups, character formulae, affine Kac-Moody algebras.
Поступила в редакцию: 20.08.2011 Исправленный вариант: 02.10.2011
Образец цитирования:
Adriano Moura, Fernanda Pereira, “Graded limits of minimal affinizations and beyond: the multiplicity free case for type $E_6$”, Algebra Discrete Math., 12:1 (2011), 69–115
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm58 https://www.mathnet.ru/rus/adm/v12/i1/p69
|
Статистика просмотров: |
Страница аннотации: | 1230 | PDF полного текста: | 93 | Список литературы: | 47 | Первая страница: | 1 |
|