|
Algebra and Discrete Mathematics, 2016, том 21, выпуск 1, страницы 153–162
(Mi adm559)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
On nilpotent Lie algebras of derivations with large center
Kateryna Sysak Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv National Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine
Аннотация:
Let $\mathbb K$ be a field of characteristic zero and $A$ an associative commutative $\mathbb K$-algebra that is an integral domain. Denote by $R$ the quotient field of $A$ and by $W(A)=R\operatorname{Der} A$ the Lie algebra of derivations on $R$ that are products of elements of $R$ and derivations on $A$. Nilpotent Lie subalgebras of the Lie algebra $W(A)$ of rank $n$ over $R$ with the center of rank $n-1$ are studied. It is proved that such a Lie algebra $L$ is isomorphic to a subalgebra of the Lie algebra $u_n(F)$ of triangular polynomial derivations where $F$ is the field of constants for $L$.
Ключевые слова:
derivation, Lie algebra, nilpotent Lie subalgebra, triangular derivation, polynomial algebra.
Поступила в редакцию: 24.12.2015 Исправленный вариант: 10.02.2016
Образец цитирования:
Kateryna Sysak, “On nilpotent Lie algebras of derivations with large center”, Algebra Discrete Math., 21:1 (2016), 153–162
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm559 https://www.mathnet.ru/rus/adm/v21/i1/p153
|
Статистика просмотров: |
Страница аннотации: | 168 | PDF полного текста: | 60 | Список литературы: | 43 |
|