|
Algebra and Discrete Mathematics, 2015, том 20, выпуск 2, страницы 325–329
(Mi adm547)
|
|
|
|
RESEARCH ARTICLE
A morphic ring of neat range one
O. Pihura, B. Zabavsky Department of Mechanics and Mathematics, Ivan Franko National University of L'viv
Аннотация:
We show that a commutative ring $R$ has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring $R$ has a neat range one if and only if for any elements $a, b \in R$ such that $aR=bR$ there exist neat elements $s, t \in R$ such that $bs=c$, $ct=b$. Examples of morphic rings of neat range one are given.
Ключевые слова:
Bezout ring, neat ring, clear ring, elementary divisor ring, stable range one, neat range one.
Поступила в редакцию: 07.11.2014 Исправленный вариант: 20.01.2015
Образец цитирования:
O. Pihura, B. Zabavsky, “A morphic ring of neat range one”, Algebra Discrete Math., 20:2 (2015), 325–329
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm547 https://www.mathnet.ru/rus/adm/v20/i2/p325
|
|