|
Algebra and Discrete Mathematics, 2015, том 20, выпуск 2, страницы 171–181
(Mi adm538)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
On the $le$-semigroups whose semigroup of bi-ideal elements is a normal band
A. K. Bhuniya, M. Kumbhakar Department of Mathematics, Visva Bharati University, Santiniketan
Аннотация:
It is well known that the semigroup $\mathcal{B}(S)$ of all bi-ideal elements of an $le$-semigroup $S$ is a band if and only if $S$ is both regular and intra-regular. Here we show that $\mathcal{B}(S)$ is a band if and only if it is a normal band and give a complete characterization of the $le$-semigroups $S$ for which the associated semigroup $\mathcal{B}(S)$ is in each of the seven nontrivial subvarieties of normal bands. We also show that the set $\mathcal{B}_{m}(S)$ of all minimal bi-ideal elements of $S$ forms a rectangular band and that $\mathcal{B}_{m}(S)$ is a bi-ideal of the semigroup $\mathcal{B(S)}$.
Ключевые слова:
bi-ideal elements, duo; intra-regular, lattice-ordered semigroup, locally testable, normal band, regular.
Поступила в редакцию: 14.07.2014 Исправленный вариант: 18.05.2015
Образец цитирования:
A. K. Bhuniya, M. Kumbhakar, “On the $le$-semigroups whose semigroup of bi-ideal elements is a normal band”, Algebra Discrete Math., 20:2 (2015), 171–181
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm538 https://www.mathnet.ru/rus/adm/v20/i2/p171
|
Статистика просмотров: |
Страница аннотации: | 214 | PDF полного текста: | 133 | Список литературы: | 85 |
|