|
Algebra and Discrete Mathematics, 2015, том 20, выпуск 1, страницы 32–39
(Mi adm529)
|
|
|
|
RESEARCH ARTICLE
On characteristic properties of semigroups
Vitaliy M. Bondarenko, Yaroslav V. Zaciha Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev
Аннотация:
Let $\mathcal{K}$ be a class of semigroups and $\mathcal{P}$ be a set of general properties of semigroups. We call a subset $Q$ of $\mathcal{P}$ characteristic for a semigroup $S\in\mathcal{K}$ if, up to isomorphism and anti-isomorphism, $S$ is the only semigroup in $\mathcal{K}$, which satisfies all the properties from $Q$.
The set of properties $\mathcal{P}$ is called char-complete for $\mathcal{K}$ if for any $S\in \mathcal{K}$
the set of all properties $P\in\mathcal{P}$, which hold for the semigroup $S$, is characteristic for $S$. We indicate a 7-element set of properties of semigroups which is a minimal char-complete set for the class of semigroups of order $3$.
Ключевые слова:
semigroup, anti-isomorphism, idempotent, Cayley table, characteristic property, char-complete set.
Поступила в редакцию: 07.09.2015 Исправленный вариант: 07.09.2015
Образец цитирования:
Vitaliy M. Bondarenko, Yaroslav V. Zaciha, “On characteristic properties of semigroups”, Algebra Discrete Math., 20:1 (2015), 32–39
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm529 https://www.mathnet.ru/rus/adm/v20/i1/p32
|
Статистика просмотров: |
Страница аннотации: | 191 | PDF полного текста: | 79 | Список литературы: | 50 |
|