|
Algebra and Discrete Mathematics, 2015, том 19, выпуск 2, страницы 254–269
(Mi adm521)
|
|
|
|
RESEARCH ARTICLE
Ultrafilters on G-spaces
O. V. Petrenko, I. V. Protasov Department of Cybernetics, Taras Shevchenko National University
Аннотация:
For a discrete group G and a discrete G-space X, we identify the Stone-Čech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on ω, the T-points, and study interrelations between these ultrafilters and some classical ultrafilters on ω.
Ключевые слова:
G-space, ultrafilters, ultracompanion, G-selective ultrafilter, G-Ramsey ultrafilter, T-point, ballean, asymorphism.
Поступила в редакцию: 26.06.2015 Исправленный вариант: 26.06.2015
Образец цитирования:
O. V. Petrenko, I. V. Protasov, “Ultrafilters on G-spaces”, Algebra Discrete Math., 19:2 (2015), 254–269
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm521 https://www.mathnet.ru/rus/adm/v19/i2/p254
|
Статистика просмотров: |
Страница аннотации: | 253 | PDF полного текста: | 91 | Список литературы: | 59 |
|