|
Algebra and Discrete Mathematics, 2015, том 19, выпуск 2, страницы 254–269
(Mi adm521)
|
|
|
|
RESEARCH ARTICLE
Ultrafilters on $G$-spaces
O. V. Petrenko, I. V. Protasov Department of Cybernetics, Taras Shevchenko National University
Аннотация:
For a discrete group $G$ and a discrete $G$-space $X$, we identify the Stone-Čech compactifications $\beta G$ and $\beta X$ with the sets of all ultrafilters on $G$ and $X$, and apply the natural action of $\beta G$ on $\beta X$ to characterize large, thick, thin, sparse and scattered subsets of $X$. We use $G$-invariant partitions and colorings to define $G$-selective and $G$-Ramsey ultrafilters on $X$. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on $\omega$, the $T$-points, and study interrelations between these ultrafilters and some classical ultrafilters on $\omega$.
Ключевые слова:
$G$-space, ultrafilters, ultracompanion, $G$-selective ultrafilter, $G$-Ramsey ultrafilter, $T$-point, ballean, asymorphism.
Поступила в редакцию: 26.06.2015 Исправленный вариант: 26.06.2015
Образец цитирования:
O. V. Petrenko, I. V. Protasov, “Ultrafilters on $G$-spaces”, Algebra Discrete Math., 19:2 (2015), 254–269
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm521 https://www.mathnet.ru/rus/adm/v19/i2/p254
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 79 | Список литературы: | 51 |
|